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The effects of successive distortions on a
turbulent boundary layer in a
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Experiments were conducted to investigate the response of a high-Reynolds-number
turbulent boundary layer in a supersonic flow to the perturbation presented by
a forward-facing ramp. Two ramps were used: one with sharp corners, the other
with rounded corners having radii of curvature equal to 15 initial boundary layer
thicknesses. The flow was turned through 20◦ in each of the compressions and
expansions. Hence, there was no net change in the flow direction over the ramps
and only a small change in free-stream conditions due to the entropy increase across
relatively weak shocks. The two experiments gave similar results. In the middle of the
relaxing boundary layer, the streamwise Reynolds stress undershot the undisturbed
levels and exhibited a response similar to that observed in subsonic boundary layer
flows recovering from an impulse of streamline curvature (Smits, Young & Bradshaw
1979b). The turbulent shear stress vanished throughout most of the boundary layer,
and an overall destruction of the turbulence production mechanisms was apparent as
the boundary layer exhibited a slow recovery.

1. Introduction
Here, we discuss two experiments designed to study the effects of successive distor-

tions on a high-Reynolds-number turbulent boundary layer in supersonic flow with a
free-stream Mach number of 2.89. In the first experiment (Ramp A), the flow passed
over a 20◦ compression corner followed by a 20◦ expansion corner with a distance
between the corners of about 6δ◦, where δ◦ was the incoming boundary layer thick-
ness. In the second experiment (Ramp B), the compression and expansion corners
were replaced by curved compression and expansion surfaces with radii of curvature
equal to 15δ◦, but retained the turning angles and the step height as on Ramp A (see
figure 1).

As the flow passed over these ramps, the boundary layer was subjected first
to an adverse pressure gradient combined with concave streamline curvature and
bulk compression, and second to a favourable pressure gradient combined with
convex streamline curvature and bulk dilatation. On Ramp A, the initial turning at
the compression corner resulted in a shock wave/boundary layer interaction. The
subsequent expansion occurred through a centred expansion fan. On Ramp B, the
concave and convex streamline curvatures were distributed over longer streamwise
distances than on Ramp A, and therefore the pressure gradients were less severe. In
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Figure 1. Schematics of the flow geometries: (a) Ramp A; (b) Ramp B.

particular, the shock associated with the concave curvature was not formed until well
outside the boundary layer, and within the boundary layer the compression occurred
through a compression fan rather than a shock wave/boundary layer interaction. On
Ramps A and B, however, there was no net change in flow direction over the ramp;
therefore, the upstream and the downstream free-stream conditions were effectively
the same except for a small shock loss on Ramp A.

These experiments, on the response to successive regions of compression and
expansion, represent a logical extension of previous work in this area, as the effects
of isolated compressions and expansions have been studied extensively in the past.
For example, the behaviour of turbulent boundary layer/shock wave interactions
generated by compression corners has been investigated over a wide range of Mach
numbers and turning angles (Settles, Fitzpatrick & Bogdonoff 1979; Debiève, Gouin
& Gaviglio 1982; Dolling & Murphy 1983; Ardonceau 1984; Smits & Muck 1987),
and there have been a number of studies of the effect of centred expansions (Dussauge
& Gaviglio 1987; Smith & Smits 1991; Arnette, Samimy & Elliot 1993). Such flows
are now reasonably well understood, at least in a qualitative sense, so that we can
broadly anticipate the response of the boundary layer.

1.1. Compression- and expansion-corner flows

In compression-corner flows, the boundary layer experiences the combined effects of
an adverse pressure gradient, concave streamline curvature, bulk compression, shock
unsteadiness, and if the pressure rise is strong enough, flow separation. The wall
stress typically decreases sharply near the start of the interaction, but quickly recovers
as the boundary layer thins in response to the overall compression, overshooting
the upstream level before eventually recovering to a level appropriate to the new
Reynolds number and Mach number on the ramp. At the same time, the turbulence
levels increase dramatically through the interaction and appear to relax only slowly.
The shear stress is generally affected less than the normal stresses, and structure
parameters, such as a1 ≡ −u′v′/q2, are strongly distorted. With the boundary layer
responding to the combined effects of many distortions, it is difficult to conclude from
the available data the specific contributions of, say, concave streamline curvature and
bulk compression to the distortion, although Selig & Smits (1991) showed that shock
unsteadiness does not contribute significantly to the turbulence amplification, in
contrast to the earlier speculations of Smits & Muck (1987). The data also show that
when the flow is compressed on a curved wall with a short radius of curvature, the
boundary layer turbulence is amplified to a significantly larger degree than when the
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compression occurs on a curved wall with a larger radius of curvature, or when the
compression is due to a wave system incident on a flat wall (Spina, Smits & Robinson
1994).

For expansion-corner flows, the response is almost the exact inverse to that seen
in compression-corner flows. The boundary layer experiences the combined effects of
a favourable pressure gradient, convex streamline curvature and bulk dilatation. In
response to the expansion, the boundary layer thickness increases, and the wall stress
rapidly decreases before beginning a relaxation where its value appears to approach
asymptotically its undisturbed value at the new Reynolds number. The streamwise
Reynolds stress falls sharply and recovers slowly. The response of the other turbulent
stresses is unknown since they have not been measured in these flows. However,
Dussauge & Gaviglio (1987) and Smith & Smits (1991) have demonstrated that a
calculation using the Reynolds stress equations closed with rapid distortion approx-
imations (RDA) can give good predictions of the measured turbulence behaviour in
the initial boundary layer response where such RDA calculations are valid. Smith &
Smits have also suggested that these methods may be used to calculate the response
of the full Reynolds stress tensor. Furthermore, these calculations have indicated that
the bulk dilatation is the most important influence on the Reynolds stress evolution;
the effect of convex curvature was found to be small, at least in the initial boundary
layer response where this calculation is valid.

1.2. Curved wall flows

Flows where the perturbations are not produced by compression or expansion corners,
but where they are produced by curved walls, as on Ramp B, have also been studied
extensively. In particular, supersonic flows over concavely curved walls have been
investigated over a wide range of turning angles and radii of curvature (Sturek &
Danberg 1972a,b; Laderman 1980; Jayaram, Taylor & Smits 1987; Donovan, Spina &
Smits 1994). A typical feature of these flows with concave streamline curvature is the
appearance of a ‘dip’ in the velocity profile below the log-law before rising above it
in the wake region. The turbulence data from these studies were recently analysed by
Spina et al. (1994), who noted that at Mach 2.9 the amplification of the longitudinal
Reynolds stress, for a given pressure rise (that is, for a given turning angle), was
smaller when the strength of the pressure gradient was reduced. In contrast, the
amplification of the Reynolds shear stress appeared to depend on the overall pressure
rise rather than the pressure gradient. For rapid distortions along curved walls where
the turbulence time scales were long compared to the time of the distortion, Jayaram
et al. (1989) found that RDA methods can give reasonable predictions of the initial
amplification of the normal and shear stresses in the boundary layer for y/δ > 0.2.

In subsonic turbulent boundary layers, concave curvature in the streamwise di-
rection introduces longitudinal vortices according to a mechanism similar to that
responsible for producing Taylor–Görtler vortices in laminar flows (Tani 1962). These
longitudinal roll cells tend to be spaced in the spanwise direction with a reasonably
regular spacing of one to two boundary layer thicknesses, and once established they
are very stable in location and strength. Although they are generally weak, in that
their tangential velocity is at least an order-of-magnitude smaller than the free-stream
velocity, they can have strong effects on the turbulence. For example, Smits, Young
& Bradshaw (1979b) found that downstream of an impulse in concave curvature the
shear stress differed by up to a factor of two in the spanwise direction. The low level
was found in the region where the secondary flow was towards the wall (that is, a
‘crest’ in the spanwise Cf distribution), and the high level was found where the flow
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was away from the wall (a ‘trough’ in the Cf distribution). The corresponding Cf
values differed by about 20% from the crest to the trough.

In some particular flows with concave curvature, Taylor–Görtler vortices have not
been observed. In the study by Smits, Eaton & Bradshaw (1979a), where the flow
developed on a cylindrical forebody before diverging on a cone, the boundary layer
experienced the combined effects of concave curvature and divergence. Here, steady
vortices were not detected. However, it is possible that unsteady vortices were formed,
without a preferred spanwise position, or that the vortices originated intermittently
at different spatial locations. The measurements were not designed to detect such
unsteady motions, so it is only possible to speculate. It is also possible that the
roll cells did not form at all because of a nonlinear interaction between concave
curvature (which amplifies longitudinal vorticity) and divergence (which amplifies
spanwise vorticity).

In separated supersonic flows, surface oil flow visualizations in the region of reat-
tachment suggest that steady Taylor–Görtler vortices can also occur in compressible
flows (Roshko & Thomke 1966). Visualizations of the separation and reattachment
lines in compression-corner flows similarly suggest the existence of longitudinal vor-
tices, with a spanwise spacing similar to that seen in incompressible flows. Selig et al.
(1989) suggested that longitudinal vortices could be the cause of a bimodal p.d.f. in
the mass-flux fluctuations downstream of a 24◦ compression corner, since they are an
effective mechanism for sweeping low-momentum fluid up from the near-wall regions.
However, no evidence of steady Taylor–Görtler-like vortices was found in any of
the attached flows on curved walls studied by Jayaram et al. (1987) and Donovan
et al. (1994). It is again possible that nonlinear effects may have prevented their
appearance. For example, it was suggested by Green (see Bradshaw 1973; Smits et al.
1979a) that bulk compression acts in many respects similarly to lateral divergence. If
it is true that Taylor–Görtler vortices do not form in subsonic boundary layer flows
when concave curvature and divergence act together, then by extension it may not be
surprising that when concave curvature and dilatation occur together, Taylor–Görtler
vortices again appear to be absent.

A criterion for the onset of steady Taylor–Görtler vortices in compressible flows
with concave curvature was developed by Smits & Dussauge (1996), as follows.
According to Schlichting (1979), Taylor–Görtler vortices first appear in a laminar,
incompressible boundary layer on a concavely curved wall when the characteristic
parameter, the Görtler number GT ,

GT =
Ueθ

ν

(
θ

R

)1/2

,

exceeds a certain value. Stability calculations give the neutral curve as a function
of a non-dimensional wavelength. Tani (1962) suggested that this criterion could be
applied to turbulent flows by using the same characteristic length scale, θ, and simply
replacing the molecular viscosity by the eddy viscosity. If it is assumed that the eddy
viscosity in the outer layer is given by

νt = 0.018Ueδ
∗ (1.1)

(Clauser 1956) then

GT =
θ

0.018δ∗

(
θ

R

)1/2

, (1.2)

which indicates that the appearance of longitudinal vortices in a turbulent flow is
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a weak function of Reynolds number since the shape factor varies somewhat with
Reynolds number. Bradshaw (1973) pointed out that the direct use of the neutral
curve for the Blasius profile is not realistic, but Tani’s measurements agreed reasonably
well with this simple proposal. Note that the Görtler number for turbulent flow can
also be written as

GT =

(
θ/δ
)1.5

0.018
(
δ∗/δ

) ( δ
R

)1/2

. (1.3)

The analysis can be extended to compressible flow by assuming that the length
scale remains unchanged and that the eddy viscosity is still given by (1.1). In other
words, the Görtler number for a compressible turbulent flow is given by (1.3), where it
is recognized that the momentum and displacement thicknesses are a strong function
of Mach number. Some typical values may then be found for the lower limit on
δ/R where longitudinal vortices are expected to appear, corresponding to the neutral
curve calculated by Smith (1955) and a fixed wavelength of 2δ (the weak dependence
of the Görtler number on Reynolds number was ignored). As the free-stream Mach
number increases from 0, to 1, to 3, to 5,

(
δ/R

)
s

increases from 0.003, to 0.005, to
0.03, to 0.11, respectively. That is, the analysis predicts a strong increase in stability
with increasing Mach number. Most of the Mach 3 curved-wall cases, see Jayaram
et al. (1987) and Donovan et al. (1994), exceed this rather crude criterion, but not
by very much (the maximum value of δ/R was 0.1), and it seems likely that the
absence of Taylor–Görtler vortices in these attached flows is at least partly due to
the stabilizing influence of Mach number. For the separated flows, the distortion of
the mean velocity profile will influence the stability calculation, and the appearance
of an inflection point will obviously make the layer more unstable in every sense.

In contrast to the case with concave curvature, flows with convex curvature have
received relatively little attention, but recently Johnson (1993) presented measurements
in a Mach 2.45 flow where the non-dimensional radius of curvature of the expansion
corner δ◦/R was varied from 0.067 to 0.2, to 1, to∞ while the overall turning angle was
maintained at 15◦. The incoming flow was still recovering from the distortion presented
by a 10◦ concavely curved wall placed 3δ◦ upstream; however, the incoming flow was
the same for each case, and the effect of varying the convex radius of curvature
can still be inferred. The downstream velocity profiles all displayed a ‘negative dip’,
in that the velocity distribution rose above the log-law in the near-wall region (in
contrast to the experiments with concave curvature where the velocity distribution fell
below the log-law in the near-wall region). Johnson found a strong suppression of the
turbulence levels downstream of the expansion, but the suppression and subsequent
relaxation of the longitudinal velocity fluctuations was remarkably similar in all four
cases suggesting that the overall pressure drop (or, equivalently, the total turning
angle) was the dominant influence rather than the strength of the pressure gradient.

1.3. Impulsive disturbances

In the experiments discussed so far, results were obtained on the initial response of
the boundary layer to ‘impulsive’ disturbances where two step changes of opposite
character occur successively. A step change is taken to mean, for example, the change
experienced by an undisturbed boundary layer in contact with a wall which suddenly
changes from being flat to being curved. If the wall then becomes flat again a short
distance downstream (the second, opposite, step change), the boundary layer is said to
experience an impulse in curvature (Smits & Wood 1985). The relaxation behaviour
is also of great interest. In particular, Smits et al. (1979b) found that the downstream
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relaxation of subsonic boundary layers to impulses in convex and concave curvature
was surprising in some respects. In the initial response, the effects of streamline
curvature were as expected with the destabilizing effects of concave curvature causing
an increase in the Reynolds stresses and the stabilizing effects of convex curvature
causing a decrease. Further downstream, however, the stress profiles did not return
monotonically to their ‘equilibrium’ levels but instead displayed a kind of second-
order response where the stress levels eventually undershot the equilibrium levels. In
this case, the net effect of an impulse in destabilizing curvature was a boundary layer
with very low levels of all turbulent stresses. Similarly, downstream of the convex
curvature, the stress levels overshot the equilibrium levels, and the net effect of an
impulse in stabilizing curvature was a boundary layer with very high levels of all
turbulent stresses. Analogous observations were made in subsequent studies by Gillis
& Johnston (1983) and Alving, Smits & Watmuff (1990). The eventual relaxation to
some equilibrium state, if it exists, is in all cases extremely slow, typically of order
100δ◦.

In the experiments described here, boundary layers in supersonic flow experience
double impulses, that is, four successive step changes in wall curvature (from flat to
concave, concave to flat, flat to convex and convex to flat). The final flow direction
is parallel to the upstream flow, so that no net change in flow direction occurs
through the distortion. The flow then proceeds downstream on the flat wall where the
relaxation behavior can be studied.

Recently Bandyopadhyay & Ahmed (1993) studied the response of a subsonic
boundary layer to similar successive perturbations. They found that the relaxing
boundary layer had a sustained lower skin friction than an equilibrium boundary
layer (wall A) at the same Reynolds number, and the recovery was not complete at
the final measurement station 100 initial momentum thicknesses downstream of the
end of curvature. The longitudinal Reynolds stress in the outer layer first displayed
levels lower than in the incoming boundary layer but the levels near the wall were
much higher. Further downstream, these elevated stress levels move out from the wall
in what Smits et al. (1979b) called a ‘stress bore’ so that the downstream profiles
demonstrate high levels of stress throughout the boundary layer.

The first detailed experiments in supersonic boundary layer flows with successive
distortions were made by Zheltovodov et al. (1990). In that study, a flow with
an initial Mach number of 2.9 passed over a 25◦ compression corner followed
by a 25◦ expansion corner. The configuration was very similar to that used in
the experiment here for Ramp A. However, only the streamwise component of
the Reynolds stress was measured. This component showed a strong decrease in
the recovery region, and the stress levels fell below the undisturbed levels in the
outer part of the layer. Unfortunately, these hot-wire results are difficult to interpret
accurately, as the boundary layers were quite thin, and the turbulence levels were
considerably underestimated because of poor spatial resolution, particularly in the
upstream, undisturbed boundary layer. As the boundary layer thickness increased
further downstream the resolution of the probes improved. However, in comparing
the upstream and downstream turbulence levels, a part of the observed increase in
the relaxation region was due to the improved resolution of the measurements and
so any estimates of turbulence amplification are inaccurate.

The study by Johnson (1993) of the flow passing over concave compression surfaces
followed by convex expansion surfaces at a free-stream Mach number of 2.45 was
mentioned earlier. In that study, the primary interest was in the relaminarization of the
downstream flow by the stabilizing influence of bulk dilatation, but Johnson showed
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that for two different upstream disturbances (a concave ramp with δ◦/R = 0.033 with
a total turning angle of 10◦, and a compression ramp with turning angle of 15◦) the
turbulence levels immediately downstream of a 15◦ expansion were essentially the
same and considerably lower than in an undisturbed boundary layer at the same
Reynolds and Mach numbers. Further downstream, the levels remained low and at
the last station, located 10δ◦ downstream of the expansion, still showed no tendency
to recover.

In the experiments presented here, we are interested in the relaxation behaviour
of turbulence, in contrast to the studies by Zheltovodov et al. (1990) and Johnson
(1993). We aim to determine the principal physical mechanisms which govern the
recovery process in the boundary layer downstream of the ramp. Our primary interest
is the interaction of compression distortions with expansion distortions, unlike John-
son who focused on the effects of bulk dilatation and relaminarization, and used a
compression ramp upstream of his expansion corner only because of the physical lim-
itations imposed by his wind tunnel facility. Also, the advantage of the present study
over Zheltovodov et al. (1990) was our ability to make two-component turbulence
measurements, and to make more accurate and detailed turbulence measurements be-
cause our initial boundary layer thickness was relatively large (approximately 26 mm).
These measurements included the response of the mean flow to the distortion and
the initial response of the turbulent stresses and their subsequent relaxation. These
results were compared with previous boundary layer measurements from single-step
and impulsive perturbations performed in the same wind tunnel at the same Mach
and Reynolds numbers. Through these comparisons, the interaction of successive
impulses is analysed, and an attempt is made to identify the different influences of
pressure gradient, compression/dilatation and curvature. In this respect, the RDA
methods discussed earlier proved to be very useful.

In §2, the experimental facilities/layout and measurement methods will be briefly
presented. The measurements made on the corner ramp (Ramp A) and on the curved
ramp (Ramp B) are discussed in §3. Section 4 compares the boundary layer behaviour
on the two ramps, and §5 considers the general reaction and relaxation behaviour
of the turbulence in the boundary layer. Finally, §6 is reserved for conclusions and
recommendations for future study.

2. Experimental details
All experiments were conducted in the high-Reynolds-number, supersonic wind

tunnel located at Princeton University’s Gas Dynamics Laboratory. The wind tunnel
is a blowdown facility with a nominal free-stream Mach number of 3. For all
tests, the stagnation chamber pressure was held constant at 689 kPa ±0.7%. The
stagnation temperature followed daily and seasonal variations, and also changed over
the course of a run, decreasing at about 0.12 K s−1. The boundary layer studied in
the experiments developed on the floor of the wind tunnel, which was approximately
adiabatic. Transition occurred naturally in the nozzle section, and downstream of the
nozzle the boundary layer developed on the wall of the test section in a nominally zero
pressure gradient. The characteristics of this boundary layer have been extensively
documented (see Settles 1975; Spina & Smits 1987; Smits & Muck 1987), and the
data demonstrate that the boundary layer is fully developed and self-preserving. The
turbulence structure (inferred from ensemble-averaged statistics and cross-correlations
of hot-wire signals) was documented in Spina & Smits (1987) and Spina, Donovan
& Smits (1991). The spanwise variations in the mean flow properties of the incoming
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Maref 2.89
Re m−1 6.3× 107 m−1

P◦ 6.9× 105 N m−2

T◦ 270 K
Tw/T◦ 1.04
Uref 580 m s−1

ρref 0.78 kg m−3

Pw 2.2× 104 N m−2

δ◦ 23 mm
δ∗ref 6.2 mm
θref 1.1 mm
(ρU)ref 450 kg m−2 s

Table 1. Incoming flow conditions

boundary layer were extensively investigated by Jayaram et al. (1987). The spanwise
wall-pressure and skin-friction distributions over a distance of ±50 mm varied by
less than ±0.5% and ±4%, respectively, and no pattern was found in the variations
which may indicate the presence of steady Taylor–Görtler vortices originating in the
nozzle. The upstream boundary layer measurements made in this study agree closely
with these earlier results. The free-stream flow conditions are summarized in table 1.

Two experiments were performed. In the first experiment, the flow passed over
a forward facing step consisting of a 20◦ compression corner followed by a 20◦

expansion corner (Ramp A, figure 1a). Between the first and second corners, there
was a flat wall 149 mm in length. Downstream of the second corner, there was a
second region of flat wall, parallel to the upstream floor, which extended for 330 mm
(≈ 13δ◦). In the second experiment, the flow was also successively turned through the
same 20◦ of compression and 20◦ of expansion, but the sharp corners of Ramp A
were replaced by curved walls with radii of curvature equal to 350 mm (δ◦/R ≈ 0.08;
Ramp B, figure 1b). For a compression surface under these flow conditions (that is
in the same wind tunnel at the same Mach and Reynolds number), Donovan et al.
(1994) found that the shock-wave forms outside of the boundary layer, and in this
respect, the flow over Ramp B experienced a near-isentropic compression followed
by an isentropic expansion. In both experiments, the interaction began at the same
position relative to the wind tunnel nozzle, and the height of the ramps was the same,
50.8 mm. Table 2 lists the streamwise variations in the free-stream flow conditions
for Ramps A and B.

In both experiments, the ramps did not span the wind tunnel. As the wind tunnel
nozzle was two-dimensional, the tunnel sidewall boundary layers had pronounced
three-dimensionality, and the interaction of the ramp flows with the sidewall boundary
layers would have complicated the current study by making the mean flow three-
dimensional. Aerodynamic fences were used to isolate the ramp distortions from the
sidewall boundary layers and to maintain the two-dimensionality of the boundary
layer flow through the distortions by minimizing the convergence or divergence of
streamlines.

In each experiment, measurements were made both on and off the tunnel centreline.
The off-centre measurements, taken at positions of z = ±25.4 mm, were used to check
that the mean flow remained two-dimensional. The two-dimensionality of the flow
was also checked using spanwise surface pressure and skin friction measurements.
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x (mm) ρδ/ρref Uδ/Uref ρδUδ/ρrefUref ρδU
2
δ/ρrefU

2
ref

(a) −41 0.9820 1.001 0.9830 0.9840
76 2.104 0.8768 1.844 1.617

114 2.102 0.8631 1.814 1.566
232 1.047 0.9793 1.025 1.004
283 1.041 0.9786 1.018 0.9967
334 0.9806 0.9843 0.9652 0.9500
385 1.050 0.9679 1.016 0.9837
436 1.083 0.9668 1.047 1.012

(b) −15 0.9914 1.000 0.9914 0.9914
330 1.176 0.9766 1.148 1.121
381 1.053 0.9728 1.025 0.9969
432 1.060 0.9886 1.047 1.036
483 1.080 0.9837 1.063 1.046
533 1.108 0.9847 1.091 1.074
584 1.215 0.9640 1.172 1.129

Table 2. Variation in boundary layer edge conditions (a) along Ramp A, (b) along Ramp B

The spanwise variations in the wall friction downstream of the distortions were less
than 10% of the centreline value, and the distribution was similar to that observed
in the upstream boundary layer flow. Spanwise variations in wall pressure were less
than 5% at all locations on the two ramps. Surface streamlines were visualized by
applying a thin layer of a kerosene-lampblack mixture on the surface of the model.
They remained parallel throughout the distortion and relaxation regions (see Smith
1993 for further details), giving further indication that steady longitudinal vortices
were not present in the flow over the surface of the ramps and further downstream.

The wall friction values were determined from a Preston tube measurement and the
Clauser chart method. To apply the Clauser chart method in compressible boundary
layers, the measured velocity profiles were first transformed into the incompressible
plane using the van Driest (1951) compressibility transformation. In this transfor-
mation, it is assumed that the length scale distributions in subsonic and supersonic
boundary layers follow the same distribution. Then, the fluid property variation due
to viscous heating may be taken into account by using Crocco’s law (or the relation-
ship suggested by Walz 1966) to relate the velocity and temperature. An equivalent
incompressible velocity can then be defined which appears to obey the usual scaling
laws such as the incompressible form of the log-law over a very wide range of Mach
and Reynolds numbers (see, for example, Fernholz & Finley 1980). The transforma-
tion assumes that the boundary layer is self-preserving which may not be strictly the
case in a distorted boundary layer flow, but is a good approximation near the wall
where the turbulence time scales are short and the boundary layer adjusts quickly to
perturbations such as shock-wave boundary layer interactions.

The Preston tube data were reduced using the method of Bradshaw & Unsworth
(1974), as corrected by Allen (1977). This reduction technique was chosen over other
methods, for example Hopkins & Keener (1966), because it is based upon correlations
in wall variables while the other methods use correlations based upon properties at
the edge of the boundary layer. In distorted supersonic flows, a reduction method
based on wall variables is intuitively appealing, as the conditions at the wall may be
different to those at the boundary layer edge because of gradients of pressure across
the boundary layer.
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From a survey of skin friction measurements in perturbed supersonic flows, Smith
et al. (1992) found that when the velocity profile displayed a region of logarithmic
variation in the transformed plane the Preston tube and Clauser chart values of τw
agreed very well, within 10%, even in flows with strong adverse pressure gradients.
Kim, Lee & Settles (1991) have shown that Preston tube results also agree well with
direct measurements of the skin friction in strongly perturbed supersonic boundary
layer flows using the oil-drop technique, and it appears that the Preston tube is an
effective tool for finding the skin friction variations in perturbed supersonic flows. On
Ramp B, the Preston measurements shown for the convexly curved wall are intended
mainly to convey the trend in the wall friction, since in regions of strong favourable
pressure gradient, the calibration of a Preston tube is not clearly defined.

Hot-wire measurements were made using a constant-temperature anemometer sys-
tem. The anemometers were DISA 55M01 units using 55M12 symmetrical bridges,
and the hot-wire probes were constructed in-house (see Smith 1993 for details).

The use of normal and crossed hot wires in supersonic flows has been treated
extensively by Kovásznay (1950), Smits, Hayakawa & Muck (1983), and Donovan &
Spina (1992). For a hot wire operating at a high overheat ratio, the output of the
anemometer can be related to the instantaneous mass-flux by

E2 = L+MG(φ)(ρu)n (2.1)

where L and M are constants for a given wire determined from the calibration and
G(φ) is the angular sensitivity function of the wire which is also determined by
calibration. For a normal hot wire, G(φ = 0) = 1, and the instantaneous mass flux is
found by inverting this relation at each point in the sample. For a crossed wire, φ and
ρu may be found from a second-order perturbation analysis of the hot-wire output
(Donovan & Spina 1992). The total temperature sensitivity of the hot wire can be
absorbed into L and M, and corrections for variations in total temperature are then
made using the method outlined in Smits et al. (1983).

The typical frequency response of a hot wire was approximately 180 kHz. For the
normal wire measurements, this frequency response was well above the frequency
content of the energy-containing turbulent motions in the flow. However, the crossed-
wire measurements have a higher frequency content, and according to the criterion
given by Gaviglio, Anguillet & Eléna (1981), the shear stresses were underestimated
by approximately 10%. However, great care was exercised during the tuning of a
crossed wire to match the wire frequency responses so as to minimize any phase
lag in the signals from the two wires since phase difference can affect the inferred
turbulence results significantly.

To check for drift in the calibration coefficients, a second calibration was performed
after each run in the experiment. Further checks on the accuracy of the hot-wire
measurements included comparisons of mean mass-flux profiles with the profiles
found from the Pitot survey, and repeatability in the turbulence profiles. That is, a
profile was accepted if a second profile measurement agreed within 10%.

The most important error in the crossed-wire measurement was the possible mis-
alignment of the probe with the incoming flow direction. To correct for angular
misalignment, a comparison of the mean output voltages during measurement was
made with the mean output during calibration. Using the calibration data, a plot of
∆E/ΣE versus ΣE was constructed, where ∆E is the difference between the mean
output voltages from the two anemometers and ΣE is the sum (figure 2). As shown
by Abell (1974), this plot can be used to determine the angular misalignment of the
crossed-wire probe during measurements. In the present work, typical misalignments
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Figure 2. Comparison of calibration and experiment mean voltages from a crossed-wire probe
revealing the angular misalignment of the probe. The small dots are the calibration data; +,
experiment data.

were less than 2◦ but that is significant enough to require correction. This was achieved
by making a simple adjustment to the intercept in the angle calibration.

To deduce a Reynolds stress from the hot-wire output, Morkovin’s (1962) ‘strong’
Reynolds analogy (SRA) was used. This analogy relates the velocity and temperature
fluctuations in an equilibrium compressible turbulent boundary layer:

T ′

T
= (γ − 1)Ma2 u

′

U

and the correlation coefficient RuT = −0.8. The SRA was used to deduce the Reynolds
stresses from the output of both the normal and crossed hot wires (for a further
discussion of the SRA see Dussauge & Gaviglio 1987; Gaviglio 1987; Spina et al.
1991; and Smith & Smits 1993).

The data were acquired using a CAMAC-based system linked to a VAXstation
3100 computer. The mean flow data were filtered through a 10 Hz low-pass filter and
acquired at a rate of 200 Hz. The fluctuating data from the hot-wire anemometers were
bandpass filtered between 10 Hz and 400 kHz and sampled at 1 MHz. The maximum
contiguous data sample for the normal wire and crossed wire measurements was
96K and 48K, respectively. In all surveys at each point in the profile, the stagnation
pressure and temperature, and the probe position, were sampled thirty times to find
an average value.

To complement the measurements made in this study, three additional sets of
measurements obtained by Konrad (1993), Settles et al. (1979) and Smits & Muck
(1987) were used for the flow upstream of both ramps, the mean flow field and
the turbulent flow field on Ramp A, respectively. These measurements were made
in the same working section, at the same Mach and Reynolds number as in the
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current study. The upstream turbulence measurements by Konrad (1993) were made
at the same location as the first of the mean profiles made in the present study
(x = −41 mm). The measurements by Settles et al. (1979) and Smits & Muck (1987)
were an essential complement to our measurements as similar measurements would
have been extremely difficult with our experimental configuration because of blockage
problems. The data from these previous studies should apply unchanged to the present
experiments, since the downstream conditions will not affect the upstream conditions
so long as the flow is supersonic (note that the subsonic portion of the boundary
layer at this Mach number is always small, normally confined to a region below
y/δ = 0.02).

3. Results
3.1. Mean flow measurements

The wall pressure distribution on Ramp A is shown in figure 3(a). At this Mach
number and turning angle, the measurements of Settles et al. (1979) taken in the same
wind tunnel at the same Reynolds number have shown that the flow is separated
in the corner with a separation bubble about 0.5δ◦ in length. Dolling & Murphy
(1983) showed that the gradual pressure rise seen in the neighbourhood of the mean
separation line is due to the unsteady motion of the separation shock. Immediately
downstream of the corner, the pressure increases quickly at first and then more
gradually as the flow experiences continued compression and turning on the ramp
face. By the end of the ramp, the pressure has reached the inviscid level for 20◦ of
turning at this Mach number. The agreement with previous measurements on the 20◦

ramp in the same wind tunnel by Settles et al. (1979) and Smits & Muck (1987) (not
shown) is very good. At the expansion corner, a sharp pressure drop occurs across
the corner, after which the pressure continues to decrease for a distance of about
3.5δ◦ downstream before levelling off. This slow relaxation is due to the interaction
of the expansion fan with the Mach number gradient in the boundary layer. The flow
downstream of the expansion corner does not reach the level corresponding to an
inviscid expansion, but previous studies of expansion-corner flows indicate that the
pressure relaxes very slowly, and the extent of our model may have been insufficient
to capture the complete relaxation in pressure.

On the concave wall of Ramp B, the pressure begins to rise at the onset of curvature
(there is no shock here, and no upstream influence due to unsteady shock motion);
it increases along the concave wall, and continues to rise even after the end of
curvature (see figure 3b). The pressure appears to level off just prior to the beginning
of convex curvature, but does not quite reach the pressure level for an isentropic
20◦ compression at this Mach number. Along the convex wall, the pressure decreases
monotonically and continues to decrease for about 2δ◦ downstream of the end of
convex curvature before levelling off. By comparison, the overall pressure changes on
Ramp A and Ramp B are similar, but the streamwise pressure gradients are much
less severe on Ramp B.

The wall friction distribution along the centreline of Ramp A is shown in figure 4(a).
The parameter Cf,ref is the local wall friction, τw , non-dimensionalized by 1

2
ρrefU

2
ref ,

where ρref and Uref are the free-stream density and velocity for the undisturbed
flow. Approaching the compression corner, the wall friction rapidly decreases as
the flow separates. Downstream of the separation bubble on the ramp face it rises
quickly, eventually surpassing the upstream level. Just prior to the expansion corner,
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Figure 3. Wall pressure distribution: (a) along the centreline of Ramp A: ◦, Ramp A; 2, 20◦

compression corner (Settles et al. 1979); (b) along the centreline of Ramp B. The beginning and
end of the convave and convex curvatures are marked on the abscissa with vertical lines.

τw appears to be levelling off. Downstream of the expansion corner, the wall friction
rapidly decreases before approaching an asymptotic value at a distance of about 6δ◦
downstream of the corner.

In contrast, the wall friction for Ramp B (figure 4b) begins to rise at the onset
of curvature, increases along the concave wall, and continues to rise after the end
of the concave curvature due to the weak adverse pressure gradient that persists
in this region. Its highest value occurs in the favourable pressure gradient on the
convex wall, 1.8δ◦ downstream of the peak in the wall pressure. Along the convex
wall, the wall friction decreases and continues to decrease after the end of curvature.
A consistent difference of about 15% was observed between the wall shear deduced
from the Preston tube measurements and the values inferred from the Clauser chart
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Figure 4. Wall friction distribution: (4) along the centreline of Ramp A: ◦, Preston tube; 2, Preston
tube (Settles et al. 1979); 4, Clauser chart; (b) along the centreline of Ramp B: ◦, Preston tube;
2, Clauser chart. The Preston tube measurements were reduced using the Bradshaw & Unsworth
(1974) scheme. For the Clauser chart values, the velocity profiles were transformed using van Driest
(1951).

method. Similar discrepancies were noted by Smith et al. (1992) in a study of strongly
distorted supersonic boundary layers. They suggested that the van Driest (1951)
compressibility transformation has errors due to the uncertainty in the boundary
layer edge conditions, and therefore the Preston tube measurements are probably
more reliable in such cases. As on Ramp A, there was no net reduction in wall
friction at the last measurement station. On Ramp B, however, the net increase in the
wall friction was about 17%, whereas on Ramp A it was about 28%. Qualitatively,
it seems that the change in wall friction depends upon the distance over which the
perturbation is applied: the longer the distance, the greater the change.
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Figure 6. The streamwise variation of integral thicknesses and mean streamline heights along
(a) Ramp A, (b) Ramp B: ◦, δ; 2, δ∗; 4, θ; ——, S/L.

The van Driest transformed velocity profiles along the centreline of Ramp A
are shown in figure 5(a). The upstream profile exhibits a substantial logarithmic
region, characteristic of an equilibrium boundary layer. On the ramp face, the wake
component increases sharply and a shallow broad dip below the law of the wall
appears. Downstream of the expansion corner (x > 149 mm), the wake component
of the velocity profile collapses while the inner region, initially distorted, quickly
recovers. The logarithmic region of the velocity profile is at first absent but reappears
at 232 mm and is completely re-established by 283 mm, 5.2δ◦ downstream of the
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(upstream of distortions); 2, 76 mm (ramp face) (Settles et al. 1979); 4, 226 mm (downstream of
expansion corner).

expansion corner. In contrast, by the last measurement station, 12.5δ◦ downstream
of the corner, the wake is only beginning to recover. The behaviour of the mean
velocity profiles closely follows that observed by Zheltovodov et al. (1990) in a 25◦

compression/expansion corner flow at about the same Mach number. By the last
measurement station, 28δ◦ downstream of the expansion corner, Zheltovodov et al.
found that the wake of the boundary layer still showed very little sign of recovery,
and the velocity profile varied logarithmically almost across the entire layer.

The velocity profiles on Ramp B (figure 5b) are less dramatic, in that near the wall
the profiles all show a substantial region of logarithmic velocity variation suggesting
that in the inner region of the boundary layer the rate of application of the distortions
was important. However, the recovery of the wake appears to be very similar in the
two experiments. At the first measurement station in the relaxation region of Ramp
B, 2.6δ◦ downstream of the end of convex curvature, the wake has collapsed, and the
subsequent recovery in the outer layer is slow.

The variation of integral thicknesses and streamline heights on Ramp A are shown
in figure 6(a). There is some uncertainty in determining the boundary layer thicknesses
and the values show considerable scatter. As expected, the boundary layer thickness,
δ, on the ramp face is reduced by the compression. The displacement thickness,
δ∗, remains relatively unchanged, but the momentum thickness, θ, increases due to
continued entrainment. Through the expansion, there is a substantial increase in
the boundary layer thickness as a result of the reduced density associated with the
expansion. This density change also causes an increase in δ∗ in the same region. The
variation of the streamline heights downstream of the distortion suggests that the
distortion affects the entrainment process. In fact, a mean streamline passing through
y/δ = 1.0 at the last measurement station on the ramp is not entrained into the
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Figure 9. Profiles of the streamwise Reynolds stress, ρ̄u′2/ρe, refU
2
e, ref , on (a) Ramp A: ◦, −38; 2,

226.; 4, 282; 3, 333; ×, 384; +, 433. (b) Ramp B: ◦, −38; 2, 329; 4, 377; 3, 430; ×, 481; +, 532;
?, 583. Units are in mm.

boundary layer downstream of the expansion; rather, it remains at the edge of the
boundary layer.

Similar trends are seen on Ramp B (figure 6b). As in Ramp A, the boundary
layer thickness grows through the distortion and appears to continue to grow in the
relaxation region, probably as a result of continued expansion in the relaxation region.
The displacement and momentum thicknesses appear to increase slightly through the
distortion, but remain almost fixed in the relaxation region. The variation in the
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x (mm) z (mm) δ (mm) δt (mm) δ∗ (mm) θ (mm)

(a) −41 0 22.8 — 6.1 1.1
76 −13 17.7 — 6.3 1.6

114 −13 20.3 — 5.5 1.4
232 0 34.1 41.3 7.0 1.3
283 0 35.1 40.0 6.5 1.2
334 0 34.2 39.3 6.8 1.3
385 0 32.7 39.4 6.3 1.2
436 0 34.3 40.2 6.9 1.4

(B) −15 0 22.5 — 6.2 1.1
330 0 33.1 40.8 6.9 1.2
381 0 29.7 35.8 6.0 1.2
432 0 33.3 36.8 6.9 1.2
483 0 34.4 35.0 7.4 1.3
533 0 33.1 35.6 7.2 1.4
584 0 35.5 35.3 6.8 1.1

Table 3. Variation in boundary layer thickness and integral thicknesses along
(a) Ramp A, (b) Ramp B

heights of the streamlines exhibit a behaviour similar to that observed in Ramp A,
and there is little or no entrainment in the relaxation region.

3.2. Turbulence measurements

From figure 7(a), it can be seen that the maximum level of the mass-flux fluctuation
intensity in Ramp A increases by more than a factor of 2. Downstream of the
expansion, however, the maximum intensity level immediately returns almost to
its upstream value with a subsequent decrease further downstream. A very similar
behaviour is seen on Ramp B (figure 7b).

The distortion is much more severe when viewed in terms of the streamwise
Reynolds stress, ρu′2. Figure 8 emphasizes the severity of the successive distortions
presented by Ramp A and their effect on the turbulence in the boundary layer. For

example, at a height of y/δ = 0.4, the peak value of ρu′2 increases by a factor of 15
through the compression, then returns to the undisturbed level after the expansion.
Note that the mean density changes by a factor of 2.4 across each of the distortions,

and that the corresponding change in u′2 is a factor of 6.3. Clearly, with changes of
these magnitudes (see table 2), the turbulence profiles do not scale on local variables
such as those proposed by Morkovin (1962).

The streamwise Reynolds stress profiles in the boundary layer downstream of
Ramp A are shown in figure 9(a). Here, the distance from the wall is scaled on a
boundary layer thickness, δt, which is the point where the turbulence intensity has
reached the free-stream level. The values of δt are about 20% larger than the values
of δ which were obtained by choosing the point where the total pressure is 99% of
the free-stream value (see table 3). In the first profile downstream of the expansion,
the intensity level for y/δt < 0.3 undershoots the equilibrium value. In contrast, the
turbulence in the outer part of the boundary layer displays virtually no cumulative
effect of the successive distortions, although with increasing streamwise distance the
region of reduced stress occupies an increasingly larger portion of the boundary layer.

As in Ramp A, the effect of the distortions on the streamwise Reynolds stress on
Ramp B (figure 9b) is first observed near the wall and then ‘propagates’ into the
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Figure 10. Profiles of the normal Reynolds stress, ρ̄v′2/ρe,refU
2
e,ref , on (a) Ramp A: ◦, −57 (Konrad

1993); 2, 229; 4, 330; 3, 435; (b) Ramp B: ◦, −57 (Konrad 1993); 2, 377; 4, 479; 3, 580. Units
are in mm.

layer. For y/δt > 0.6, the combined distortions appear to have had little effect on the
Reynolds stress. However, in the inner half of the boundary layer, the Reynolds stress
rapidly decreases, and at a distance of 7δ◦ downstream of the end of curvature the
stress falls to one-half of the upstream level at y/δt = 0.3. This undershoot continues
until about 9δ◦ downstream where the levels appear to have become constant, and
the overall stress decrease is not as low as on Ramp A. Further downstream, the
Reynolds stress profile is characterized by a steep gradient for y/δt 6 0.2, a region of
suppressed Reynolds stress for 0.25 6 y/δt 6 0.75, and a region apparently unaffected
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by the distortions for y/δt > 0.8. The change in Reynolds stress mainly reflects
changes in the turbulent velocity fluctuations, since the overall change in free-stream
mean density is very small (see table 2) and there is only a small change in the shape
of the boundary layer density profile.

As noted in §1, Smits et al. (1979b) described this behaviour as a ‘second-order’
response, in that the initial overshoot was followed by a tendency for the turbulence
intensity to recover to an equilibrium value. In the present case, however, there is
little sign of recovery in the region near the wall even at the last measurement station,
although the rate of decrease appears to be slowing.

Normal Reynolds stress profiles, ρ̄v′2, are shown in figures 10(a) and 10(b) for
Ramps A and B, respectively. The overall behaviour of the normal stress is similar
to the streamwise stress, exhibiting a decay in the stress level in the middle of the
boundary layer and a region of unaffected stress near the boundary layer edge.

Profiles of the Reynolds shear stress, −ρ̄ u′v′, for Ramp A are shown in figures 11
and 12(a). At the first measurement station in the relaxation region, the shear stress
changes sign, becoming negative in the outer 70% of the boundary layer. This
is somewhat unexpected, but the analysis presented in §5 seems to support these
observations. At the next two stations, the shear stress has recovered slightly for
y/δ < 0.5, but is still only one-third of the upstream level. For y/δ > 0.5, the shear
stress has virtually vanished. The Reynolds shear stress behaviour on Ramp B shows
a response similar to that seen in Ramp A but to a lesser degree (figure 12b). Again,
the turbulent shear stress downstream of the end of curvature changes sign between
y/δ = 0.6 and the edge of the boundary layer. Further downstream, the shear stress
recovers slightly but remains at about one-half of the upstream level, except for
y/δ > 0.7 where the shear stress has vanished. Similar observations to those seen here
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Figure 12. Profiles of the Reynolds shear stress on (a) Ramp A (b) Ramp B. See figure 10 caption
for symbol correspondence.

have been made in the outer part of a boundary layer relaxing from convex curvature
(So & Mellor 1973; Smits et al. 1979b) and the response may again be described as
‘second-order’.

The anisotropy ratio and the shear correlation coefficient, Ruv , are shown in fig-
ures 13(a, c) and 13(b, d). In the relaxing boundary layer, these parameters represent
the ratios of small quantities and have considerable errors associated with them.
Within the accuracy of the measurements, it appears that the anisotropy of the
turbulence is relatively unchanged by the successive distortions in both experiments.
Note, however, that the anisotropy is quite different from that commonly observed in
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Figure 13(a, b). For caption see facing page.

subsonic boundary layers, and it was suggested by Smits & Dussauge (1996) that the
differences are possibly due to Reynolds number effects. Also, the general reduction
in the magnitude of Ruv reveals a contrast in the response times to the distortion of
the diagonal stresses and the shear stress. Apparently, the shear stress reacts very
quickly and this is reflected in the first downstream profile. In the subsequent profiles
for Ramp A, the shear correlation begins to recover as the normal stresses decay,
except in the outer region of the boundary layer where the shear stress has vanished.
For Ramp B, Ruv recovers rapidly, and at the last measurement station, Ruv has
almost recovered to the undisturbed levels for the inner 70% of the boundary layer as
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Figure 13. Profiles of turbulence structure parameters on (a, b) Ramp A, (c, d) Ramp B.: (a, c)
anisotropy ratio, 〈u′〉/〈v′〉; (b, d) Ruv ≡ −u′v′/〈u〉〈v〉. See figure 10 caption for symbol correspon-
dence.

the turbulence regains, at least partially, its undistorted structure. It is also apparent
in these profiles of Ruv that the shear stress reacts more quickly to the distortions,
particularly in the outer part of the boundary layer. This quick recovery behaviour is
similar to that observed by Smits et al. (1979b) in a subsonic boundary layer relaxing
from an impulse in convex curvature. Furthermore, there is no strong indication that
a substantial net change in the turbulence structure takes place, and this observation
is supported by the earlier works by Jayaram et al. (1987) and Fernando & Smits
(1990).
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4. Comparison of Ramps A and B
On both ramps, inflection points (local minima and maxima) were found in the

streamwise stress profiles for the relaxing boundary layer, and the rate of propagation
of the local minimum in the profiles (see figure 9) suggested the existence of an internal
layer. As discussed in Smits & Wood (1985), an internal layer represents the region
of a perturbed boundary layer which has recovered from the flow distortion, that
is, the region where the flow has adjusted to the changed boundary conditions. The
mean velocity profiles on both ramps (figure 5) resembled the profiles in a subsonic
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Figure 15. The variation of the streamwise Reynolds stress along five streamlines originating in the
upstream boundary layer: ◦, 0.2δ◦; 2, 0.4δ◦; 4, 0.6δ◦; 3, 0.8δ◦; ×, 1.0δ◦. (a) Ramp A; (b) Ramp B.

boundary layer in the early stage of recovery from convex curvature (Baskaran, Smits
& Joubert 1987). Figure 14(a,b) shows the streamwise velocity fluctuations for both
ramps scaled on the local density and wall stress. These profiles display a ‘knee-point’,
as seen by both Baskaran et al. (1987) and Alving et al. (1990). However, in the small
region of the boundary layer where recovery has begun, the profiles could not be
collapsed with local scaling arguments. Furthermore, the whole of the boundary layer
appears to be far from equilibrium, except perhaps near its edge where effects of the
successive distortions seem to cancel.

In general, the overall response of the flow was similar on each ramp. On both
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ramps, the streamwise Reynolds stress profiles were characterized by three regions:
a region of almost immediate recovery located near the wall (the ‘internal’ layer),
a region in the middle of the boundary layer where the turbulent stress levels were
decreasing, and a region near the edge of the boundary layer which was virtually
unaffected by the distortions. As part of the relaxation behaviour, all turbulence
quantities on both ramps exhibited an undershoot in the central region of the
boundary layer.

Despite these overall similarities, distinct differences in the boundary layer responses
were observed. For example, the turbulence intensities on Ramp A were generally
lower than on Ramp B, and the behaviour of the turbulence depended upon the
specific nature of the distortions. This difference was particularly noticeable in the
central portion of the boundary layer, where on Ramp B the stress decay was smaller
and shorter in duration than on Ramp A (figure 10). In fact, by the end of Ramp B,
the decay appeared to have ceased while only appearing to have slowed on Ramp A.

Furthermore, the local extrema appearing in the streamwise Reynolds stress profiles
were located at different heights in the boundary layer. On Ramp B where the
boundary layer appeared to have a quicker response, both extrema first appeared
higher in the boundary layer and remained there further downstream. The turbulence
intensities at the points of extrema on Ramp B were also closer to the undisturbed
levels than the intensities at the extrema at the same relative positions on Ramp A.
Finally, the streamwise stress levels along streamlines originating at five heights in
the upstream boundary layer are different (see figure 15). At the furthest downstream
locations, the variation on Ramp B showed the beginning of a recovery in all
streamlines while at the same relative positions on Ramp A, a recovery was only
observed along streamlines originating at y/δt < 0.4. Immediately downstream of the
expansion, it appears that the boundary layer on Ramp B was beginning to recover
while the boundary layer on Ramp A at the same point was still reacting to the
distortion. Alternatively, it could be that the expansion on Ramp A reinforced a
relaxation process which had already begun on the ramp face, while on Ramp B the
expansion distorted a boundary layer which had not fully responded to the distortion
due to the initial compression.

Recent measurements by Johnson (1993) suggest that for the geometries he studied
(that is, one turning angle and a limited range of δ◦/R), the response of a supersonic
boundary layer to convex curvature is determined by the total turning angle rather
than the radius of curvature. Hence, it may be that the differences observed in the
response of the flows over the two ramps are a reflection of the different compression
histories. This ‘path-dependence’ of the turbulence response in compression ramp
flows was also noted by Spina et al. (1994). Furthermore, in the outer part of the
boundary layer, neither series of distortions appeared to have had a dramatic effect on
the streamwise intensity levels, and downstream of both distortions, the stress levels
in the outer part of the boundary layer were unchanged from the upstream profile.
This observation supports the idea that the unsteady shock motion present in Ramp
A does not transfer significant mean flow energy to the turbulence: any amplification
imparted to the turbulence by the shock wave is reduced by an equal amount in the
expansion fan, suggesting a linear response.

5. Relaxation behaviour
To analyse the general relaxation behaviour of the boundary layer downstream of

the distortions, we will focus on the flow over Ramp A since the gross features of the



Successive distortions in a supersonic turbulent boundary layer 281

0

0.5

–100

x (mm)
0 100 200 300 400 500

1.0

1.5

3.5

4.0

p w
/p

w
, r

ef

2.0

3.0

2.5

Figure 16. A comparison of the computed and experimental wall pressure distribution on Ramp
A: 2, measured values of wall pressure; —, wall pressure calculated using a rotational method of
characteristic algorithm.

boundary layer response were similar in the two flows. As noted earlier, studies of
distorted supersonic flows have demonstrated the utility of simplified Reynolds stress
calculations for investigating the boundary layer response (Dussauge & Gaviglio
1987; Jayaram et al. 1989; Smith & Smits 1991). In these investigations, the evolution
of the turbulent flowfield was predicted from the Reynolds stress equations which were
simplified and closed using rapid distortion approximations (RDA) (see Dussauge &
Gaviglio 1987). Since by design, Ramp A imposed distortions which were more rapid
than those imposed by Ramp B, and therefore satisfied the rapid distortion criteria
better, we have used RDA methods to help establish qualitative explanations of the
observed relaxation behaviour on Ramp A.

The scope of the current study was to use the RDA calculations as a tool towards
understanding the important turbulence modifying mechanisms in the distortions.
By design, the RDA calculation focuses on the boundary layer response immedi-
ately downstream of the distortion (x < 5δ◦). Accurate predictions of the Reynolds
stress behaviour further into the boundary layer relaxation would require more
detailed turbulence modelling. This approach falls outside the scope of an RDA
calculation and was not undertaken in the current study. An evaluation of differ-
ent turbulence models in this type of calculation was made in the earlier study
by Jayaram et al. (1989), and their evaluations guided the current work. Further-
more, the incoming turbulence for the expansion in Ramp A was not weak and
it was far from equilibrium. Consequently, the usual rapid distortion criteria (see
Dussauge & Gaviglio 1987) were only weakly satisfied. For example, the ratio of
the distortion time scale to the turbulence time scale was 0.63. Hence, the quasi-
rapid method developed by Donovan (1989) was employed with the dissipation
and return-to-isotropy terms being retained to help account for non-rapid phenom-
ena.
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Figure 17. A comparison of a computed and an experimental mean velocity profile on Ramp
A: ◦, experimental profile; —, computed profile. Measurement station is 3.6δ◦ downstream of the
expansion corner.

The rapid distortion assumptions presume a decoupling of the mean and turbulent
flow fields. The mean flow can then be treated as inviscid and rotational, and
calculated using the method of characteristics (the calculations are confined to the
supersonic part of the flow). In figure 16, the calculated wall pressure distribution is
compared with the experimental values. The agreement is reasonable, and since it is
the flow immediately downstream of the corner that is of immediate interest here,
the discrepancies which occur further downstream are not critical. More importantly,
the experimental and calculated velocity profiles demonstrate very good agreement
(figure 17).

To apply the RDA method, the incoming Reynolds stress tensor must be known.
The measurements on the ramp by Smits & Muck (1987) were used as input to-

gether with the assumption that w′2/u′2 ≈ 0.66, as found in an equilibrium turbulent
boundary layer at a similar Mach and Reynolds number (see Konrad 1993).

The calculated values of the streamwise stress at x = 229 mm (3.6δ◦) differed
from the measured values by a factor of 2 (figure 18). However, if the downstream
values are compared with the corresponding values observed on the ramp, it is
clear that the rapid distortion method accounts for a large fraction of the observed
turbulence attenuation. On the other hand, the calculated shear stress profile at the
same location agrees quite well with the measured profile (figure 19), including a
region of negative shear stress. This can be understood by considering the Reynolds
shear stress transport equation.

For the flow in the expansion, consider the Reynolds stress equations in Favre-
averaged variables (Cebeci & Smith 1974) for the shear stress −ρu′v′ and the stream-
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Figure 18. A comparison of a computed and experimental streamwise Reynolds stress profile 3.6δ◦
downstream of the expansion corner on Model A. A stress profile on the ramp face is included for
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wise stress ρu′2:
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Dt
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∂Ũ
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In the evolution of the shear stress, an additional production term becomes im-

portant because of the streamline curvature, namely ρu′2∂Ṽ /∂x. Near the wall where

∂Ũ/∂y is large, this additional term is negligible when compared with the main

production term, ρv′2∂Ũ/∂y. However, in the middle of the boundary layer where

∂Ũ/∂y decreases, the relative influence of ∂Ṽ /∂x becomes larger. Furthermore, the
streamwise Reynolds stress profile immediately upstream of the expansion corner
has a pronounced peak in the middle of the boundary layer. Since the curvature is

convex (∂Ṽ /∂x < 0) and the streamwise stress is strongly amplified, a large negative
production term appears in the shear stress transport equation. It is possible that
this term may be the driving force for the change of sign in the shear stress in the
downstream boundary layer.

Consider also the order of magnitude of the terms appearing in the Reynolds stress
transport equations given above. By repeating the calculation, successively neglecting
terms in the equations and comparing the results with experiment, the processes that
dominate the distortion and relaxation behaviour can be identified. The production
terms which are typically neglected in the boundary layer approximations for the two

stress equations given earlier, ρu′2∂Ṽ /∂x and −2ρu′2∂Ũ/∂x, proved to be an order
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Figure 19. A comparison of a computed, 2, and experimental, ◦, Reynolds shear stress profile
3.6δ◦ (229 mm) downstream of the expansion corner on Ramp A.

of magnitude larger in the expansion than the production terms typically retained,

ρv′2∂Ũ/∂y and −ρu′v′∂Ũ/∂y. In fact, in the outer region of the boundary layer, the
production terms along with the effects of dilatation appear to dominate. For the shear
stress, these combined effects account for approximately 60% of the decrease in the
expansion. For the streamwise stress in the expansion, the additional production term
and the main production term (which changes sign due to the strong gradients present
in the expansion) become large sinks of turbulence energy. It is not surprising to find
that the effect of dilatation is so strong. In a similar expansion-corner flow, Smith &
Smits (1991) found that 90% of the change in the streamwise Reynolds stress was due
solely to bulk dilatation. In fact, it appears that in strongly expanded flows, dilatation
dominates the initial response of the turbulence. Further downstream, however, the
striking similarity between the streamwise Reynolds stress measurements presented
here and the measurements made by Smits et al. (1979b) in a subsonic turbulent
boundary layer recovering from an impulse of curvature suggests that the long-term
relaxation behaviour is largely determined by the long-lasting effects of curvature.

The measurements can also be used to determine the magnitude of the turbulent
diffusion terms which appear in the Reynolds stress transport equations. The turbulent

diffusion terms ∂ρu′v′2/∂y and −∂ρu′2v′/∂y assume large negative values in the middle
of the boundary layer at the first station downstream of the expansion. In the shear
stress equation, the diffusion term (which in this case acts as a sink of energy in
the middle of the boundary layer) combines with the diminished production term
to inhibit the recovery of the shear stress. In contrast, for the streamwise stress the
diffusion term is a ‘source’ of energy in the middle of the boundary layer. In this
region, the streamwise stress profile decays with streamwise distance (figure 19). It
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appears that the large diffusion term transfers energy from the outer region of the
boundary layer to recover the deficit closer to the wall.

From this analysis, it appears that the additional production terms and the strong
turbulent diffusion processes may be the driving forces behind the dramatic reduction
in the shear stress and its subsequent slow recovery. Furthermore by interacting with
the turbulent shear, the mean velocity transfers energy from the outer region of the
boundary layer, where it resides in the mean flow, to the wall. At the wall, the energy
is converted to turbulence energy by the interaction of the turbulent shear stress with
the mean velocity gradient. Turbulent diffusion then carries some of this energy back
to the outer region of the boundary layer. Since each step of this cycle is dependent
upon the Reynolds stresses, the reduction of these stresses at any level in the boundary
layer interrupts the transfer of energy. As a result the mean and turbulent flow decay
quickly (Townsend 1976).

The combination of compression–expansion distortions appears to be effective in
reducing all mechanisms for turbulence energy production. The collapse of the shear
stress and the fuller shape of the mean velocity profile inhibit the production of
energy in the normal components. In turn, the low levels of normal stresses prevent a
recovery of the shear stress. Together these phenomena reinforce the non-equilibrium
state of the boundary layer and suggest a very slow recovery.

6. Conclusions
Two flows were considered in which a supersonic turbulent boundary layer was

subjected to two successive distortions of equal but opposite sign. The distortions on
Ramps A and B were designed such that the flow experienced the same changes in
curvature and pressure, but with different histories. Measurements in the boundary
layer downstream of the distortions revealed that the different flow histories appeared
to have had little effect on the net response of the boundary layer. For example,
although the flow response in the two interactions are different in detail, the wall
friction distributions relaxed in both ramps to approximately the same levels down-
stream. Similarly, on both ramps, the wake initially collapsed and recovered very
slowly so that at the last measurement station a logarithmic variation in velocity was
observed across nearly the entire layer.

The general shape of the streamwise Reynolds stress profiles suggested three zones
of response: a recovery region near the wall where the turbulence recovered quickly
from the perturbations; a zone of strong response in the middle of the boundary
layer where the turbulence undershot the equilibrium distribution sharply in response
to the combined effects of the perturbations (second-order response); and a zone
of advection near the edge of the boundary layer where the turbulence appeared
unaffected by the overall effects of the perturbations (linear response). This latter
observation further supported the conclusion of Selig & Smits (1991) that at this
Mach number shock-wave oscillation does not contribute to turbulence amplification
in shock-wave/boundary layer interactions.

A number of factors combined to inhibit the turbulence production mechanisms in
the relaxing boundary layer. These factors included a fuller velocity profile, a decay
of the streamwise stress, and a collapse of the shear stress in the expansion fan. As a
result, a long recovery period may be expected.

Over most of the boundary layer flow immediately downstream of the distortions,
the shear stress appeared to change sign. This observation was supported by an
analysis based on rapid distortion approximations. A subsequent recovery of the shear
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stress was observed in the lower 60% of the boundary layer, but in the remaining part
of the boundary layer, the shear stress was negligible. In the expansion, estimates of the
production terms in the Reynolds stress equations revealed that ‘negative’ production
can occur and may be largely responsible for the change of sign in the shear stress
observation, and the complex nature of the relaxation process. Not unexpectedly, this
indicates that the conventional eddy viscosity approaches to turbulence modelling
have severe limitations for these strongly perturbed flows.

This work was supported by AFOSR Grants F49620-93-0064, F49620-93-1-0427,
F49620-93-1-0476 and F49620-93-1-0478.
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